
Large memory management vulnerabilities

Large memory management Large memory management
vulnerabilitiesvulnerabilities

System, compiler, and application issuesSystem, compiler, and application issues

Gaël Delalleau
gael.delalleau@beijaflore.com
gael.delalleau+csw@m4x.org

Security consultant from

http://www.beijaflore.com
CancSecWest 2005
Vancouver – May 4-6

mailto:gael.delalleau@beijaflore.com
mailto:gael.delalleau+csw@m4x.org
http://www.beijaflore.com/

Large memory management vulnerabilities

AgendaAgenda

▐ Dynamic map of a process virtual memory space

►Operating systems & compilers security issues
►Exploiting unexploitable bugs
►Application flaws dealing with large data sizes

▐ Easy to exploit? Easy to protect from?

OS, cc
issues

Exploiting
more bugs

Application
flaws

Large memory management vulnerabilities

Introduction (1/2)Introduction (1/2)

▐ Large (N GB) memory sizes now common
► Memory size = RAM + swap
► Servers
► Desktop (games, multiple apps)

▐ A process can alloc 1 to 3 GB depending on OS
► An application may need to handle large (N GB) data sizes
► 32 bits CPUs : the whole virtual memory space can be filled
► “Out of memory” situations (OOM) in a process are not fatal

▐ 64 bits CPUs give much more virtual space

Large memory management vulnerabilities

Introduction (2/2)Introduction (2/2)
▐ Big memory usage situations are badly handled,

introducing exploitable holes in applications
► Operating systems : break the usual behavior rules about stack, heap,

mappings at page 0...
► Compilers : introduce security flaws in valid application code
► Applications : 32 bits counters overflow and sign problems

▐ “Unexploitable” bugs may be exploited to run
arbitrary code in a process

► NULL pointers dereference, common in OOM conditions
► Buffer overflows and underflows may corrupt an adjacent memory

area

Large memory management vulnerabilities

Dynamic map of a processDynamic map of a process
virtual memory spacevirtual memory space

Large memory management vulnerabilities

► Naive view
► Naive view memory protections
► Solaris 10
► FreeBSD 5.3
► Linux 2.6

Dynamic map of a process virtual Dynamic map of a process virtual
memory spacememory space

Large memory management vulnerabilities

Virtual memory space: naive viewVirtual memory space: naive view

00000000

FFFFFFFF
(32 bits)

Protected memory reserved
for the OS (kernel)

Executable code

Static data

Dynamically allocated data: “heap”

Memory holding environment, arguments,
local variables and execution flow control
structures: “stack”

brk()

Unmapped memory

Unmapped memory

Mapped from executable
file at a static address

Large memory management vulnerabilities

Memory protections (naive)Memory protections (naive)

00000000

FFFFFFFF
(32 bits)

Protected memory reserved
for the OS (kernel)

Executable code

Static data

Dynamically allocated data: “heap”

Memory holding environment, arguments,
local variables and execution flow control
structures: “stack”

brk()

Unmapped memory

Mapped from executable
file at a static address

A “guard page” prevents heap and stack from
colliding

Trying to access unmapped memory throws an
exception or a segmentation fault signal
=> protects against NULL pointer dereference

Large memory management vulnerabilities

Let's dive into the real worldLet's dive into the real world
▐ No standard for memory allocation behavior
▐ Major changes between vendors and versions of:

► OS
► Libc
► Threading library
► Compiler and linker

▐ Additional mappings
► Dynamic libraries: code and data
► Additional heaps and stacks (threads...)
► Anonymous memory (mmap, VirtualAlloc...)
► Shared memory (IPC)
► Files mapped in memory
► System mappings: PEB, TEB (Windows), vsyscall (Linux), ...

▐ Next slides show the behavior of real systems

Large memory management vulnerabilities

Solaris 10 / x86Solaris 10 / x86

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08050000

Mapping allowed, but can't be reached
with default limits

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [continuum]

Gap area, mapping impossible

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Upper and lower limits of the heap

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128 M)

Large memory management vulnerabilities

FreeBSD 5.3FreeBSD 5.3

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Stack growing down [continuum]

Heap growing up [continuum]

Mmap area “from bottom to top”
 [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Limit between heap and mmap area

Status of unallocated memory :

Mapping allowed

Mapping forbidden

Large memory management vulnerabilities

Operating systems and compilers Operating systems and compilers
security issuessecurity issues

Large memory management vulnerabilities

►Heap / stack overlap
►Jumping the stack gap
►Example of a memory management kernel bug

Operating systems and compilers Operating systems and compilers
security issuessecurity issues

Large memory management vulnerabilities

Heap / stack overlapHeap / stack overlap
▐ Can heap and stack “collide”?

► Heap grows up... stack grows down...
► Collision or not: depends on process VM map
► Two protections mechanisms at bottom of stack

 Gap page(s): mappings forbidden
 Guard page(s): PROT_NONE mapping

▐ Linux 2.6
► No gap, no guard page!
► mmap() allocates close to bottom of stack if low mem

(kernel>=2.6.9 ?)
► Heap allocations use mmap if size>128K or if low memory condition
► Thus heap and stack can be contiguous!

OS, cc
issues

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128
M)

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128
M)

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128
M)

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128
M)

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128
M)

Heap and stack are contiguous.

There is no unmapped memory at bottom
of stack.

Stack growth and stack overflow signaling
are no longer handled by the kernel since
they rely on page faults access at bottom
of stack.

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128
M)

%esp lies in
heap mapping

(for purists: the
stack and heap
VMAs don't
overlap)

Stack growth
needed by
application

Large memory management vulnerabilities

Heap / stack overlap DemoHeap / stack overlap Demo
▐ Exploiting mod_php 4.3.0 on Apache 2.0.53

► Goal: execute assembly code from a restricted PHP script
► Allows for breaking out of safe_mode
► Needs ability to allocate ~3 GB of memory

 Enough RAM + swap
 Disabled PHP memory_limit option, or use a memory leak

▐ Exploit scenario
► Allocate large blocks of memory with emalloc() => malloc()
► Call recursive function many times

 the stack “goes down” and overlap with one of the allocated block
 R/W access to this block == R/W access to stack memory :-)
 Modify a saved EIP address in stack to point to shellcode and return

OS, cc
issues

Large memory management vulnerabilities

Vulnerability StatusVulnerability Status
for heap / stack overlapfor heap / stack overlap

► Linux 2.4
► Linux 2.6
► FreeBSD 5.3
► OpenBSD 3.6
► Linux emulation on FreeBSD 5.3
► Linux emulation on OpenBSD 3.6
► Solaris 10 / x86
► Solaris 9 / Sparc
► Windows XP SP1
► Any OS with certain uncommon

threading libraries

SAFE
UNSAFE
MMAP UNSAFE
SAFE (but...)
UNSAFE
SAFE (but...)
SAFE
SAFE
SAFE
UNSAFE

OS, cc
issues

Large memory management vulnerabilities

Jumping the stack gapJumping the stack gap
▐ Protection with gap or guard page: unsafe

► A few KB under the stack are protected by the OS
 No other mapping can lie there
 OS grows the stack mapping if a GP fault happens below the stack
 If the stack can't be grown a SIGSEGV is delivered

► BUT: the application controls the stack pointer, not the OS
 Local (“automatic”) variables allocation on function calls
 Usage of alloca()

▐ Vulnerability is not in the application C code...
▐ ... but may be introduced by the compiler

OS, cc
issues

Large memory management vulnerabilities

Normal behaviorNormal behavior

Gap or guard page(s) : a few KB

Stack (MAP_GROWSDOWN
mapping on Linux)

Other mappings

int
f(char *src) {

char buffer1[5000];
char buffer2[5000];
memcpy(buffer2, src, 5000);
...
return 0;

}

%esp

%esp - 10008

OS, cc
issues

Large memory management vulnerabilities

Normal behaviorNormal behavior

Gap or guard page(s) : a few KB

Stack (MAP_GROWSDOWN
mapping on Linux)

Other mappings

int
f(char *src) {

char buffer1[5000];
char buffer2[5000];
memcpy(buffer2, src, 5000);
...
return 0;

}

%esp

%esp - 10008 %esp

OS, cc
issues

Large memory management vulnerabilities

Jumping the gapJumping the gap

Gap or guard page(s) : a few KB

Stack

Heap or
other
interesting
mappings
allocated
just under
the stack

int
f(char *src) {

char buffer1[5000];
char buffer2[5000];
memcpy(buffer2, src, 5000);
...
return 0;

}

%esp

%esp - 10008

OS, cc
issues

Large memory management vulnerabilities

Jumping the gapJumping the gap

Gap or guard page(s) : a few KB

Stack

Heap or
other
interesting
mappings
allocated
just under
the stack

int
f(char *src) {

char buffer1[5000];
char buffer2[5000];
memcpy(buffer2, src, 5000);
...
return 0;

}

%esp

%esp - 10008 %esp

Heap or
other
interesting
mappings

OVERLAP

with stack !

OS, cc
issues

Large memory management vulnerabilities

GCC default behaviour unsafeGCC default behaviour unsafe

▐ Allocation of local variables on stack
Prologue: sub $size, %esp
► $size > size of protected gap >= size of a page (4096 B)
► Area not accessed until told by the application
► If a mapping exists at %esp = %esp_old - $size, then access to
%esp doesn't create a GP fault: “jumping the gap”

▐ Same problem with alloca(size)
► Inlined as sub $size, %esp
► No sanity check on $size

 $size can be larger than gap size
 $size can be negative

OS, cc
issues

Large memory management vulnerabilities

Example on Solaris 9 / SparcExample on Solaris 9 / Sparc

▐ Big gap, between 16 KB and 64 KB
► depends on stack size limit

▐ ld.so is mapped below the stack size limit
► If we jump the gap, stack variables will overwrite the .data and .bss

sections of ld.so

▐ Most applications will not be vulnerable
► Need for a function with a huge unused local variable or alloca()
► We must access this function when %esp is close from stack limit

▐ We can control %pc on vulnerable applications
► ld.so data section has pointers to function pointers, which are called

OS, cc
issues

Large memory management vulnerabilities

Forcing safer stack allocationsForcing safer stack allocations

▐ Use gcc flag -fstack-check
► A NULL byte is written every 4096 bytes in the allocated area
► The gap or guard page will be hit, forcing stack growth
► If stack is unable to grow the kernel delivers a signal to the process
► This is the default on Windows

 the kernel uses only guard page accesses to grow the stack
 access below the guard page would trigger a 0xC0000005 exception

▐ alloca(size) also checked...
▐ ...yet negative sizes (>2G) are still unsafe

OS, cc
issues

Large memory management vulnerabilities

Vulnerability StatusVulnerability Status
for “gap jump”for “gap jump”

► GCC on UNIX (default)
► GCC on UNIX (with -fstack-check)
► Other compilers on UNIX
► Any good compiler on Windows

UNSAFE
SAFE
UNTESTED
SAFE

OS, cc
issues

Large memory management vulnerabilities

Example of a memoryExample of a memory
management bug in kernelmanagement bug in kernel

▐ Small flaw in mmap() allocations on OpenBSD
► size = 3,9G => error, mmap() returns -1 (OOM)

► 4G-4096 < size <= 4G => success, but allocates nothing

▐ The flaw lies in kernel code
#define round_page(x) (((x) + PAGE_MASK) & ~PAGE_MASK)
In sys_mmap(p, v, retval):
 pageoff = (pos & PAGE_MASK);
 size += pageoff; /* add offset */
 size = (vsize_t) round_page(size); /* round up */
 if ((ssize_t) size < 0) return (EINVAL); /* don't allow wrap */

▐ Some applications might be at risk
► If mmap() call with a size parameter we can control (file mapping?)
► Exploitation: access to other mappings instead of the expected one

OS, cc
issues

Large memory management vulnerabilities

Exploiting unexploitable bugsExploiting unexploitable bugs

Large memory management vulnerabilities

►Exploiting NULL pointers (OOM crashes)
►Exploiting other bugs using mapping overflows

Exploiting unexploitable bugsExploiting unexploitable bugs

Large memory management vulnerabilities

Exploiting NULL pointersExploiting NULL pointers
Using OOM “crashes” to run arbitrary codeUsing OOM “crashes” to run arbitrary code

▐ malloc(size) returns NULL (00000000) if OOM
► Flawed applications fail to check this return value
► Dereferencing the NULL pointer access unallocated memory => OS

sends SIGSEGV or exception
► This is the expected behavior (documented)... BUT!

▐ We might be able to exploit this to run ASM code
► On some OSes we can map the first page at address 0
► On some applications the address really accessed is not 0

Exploiting
more bugs

Large memory management vulnerabilities

Creating a mappingCreating a mapping
at address 0at address 0

▐ On Linux 2.6.x mmap() can allocate the first page
► So malloc() can too
► We just need to fill the available memory space

▐ On Solaris 10/x86, the stack can “grow” down to 0
► But only if the default stack size limit has been increased

Exploiting
more bugs

Large memory management vulnerabilities

Solaris 10 / x86Solaris 10 / x86

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08050000

Mapping allowed, but can't be reached
with default limits

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [continuum]

Gap area, mapping impossible

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Upper and lower limits of the heap

Large memory management vulnerabilities

Linux 2.6Linux 2.6

00000000

FFFFFFFF

h
e
a
p

E
L
F

m
m

a
p

s
ta

c
k

li
b

s

4 Gb

3 Gb

2 Gb

1 Gb

08048000

Mapping allowed

Mapping forbidden

Status of unallocated memory :

Stack growing down [continuum]

Heap growing up [fragmented]

“top down” mmap area [fragmented]

ELF mapping : code segment [r-x]

ELF mapping : data segment [rwx]

Lower limit of the stack (default 128
M)

Large memory management vulnerabilities

ExampleExample
▐ Sample vulnerable code

/* Let's copy 'userdata' into 'buffer' */
size = strlen(userdata) + 1;

buffer = (char *) malloc(size); // no check of return value

memcpy(buffer, userdata, size); // buffer may be 00000000

▐ On Linux 2.6 heap overflow situation

▐ On Solaris 10/x86 stack overflow situation

Exploiting
more bugs

Large memory management vulnerabilities

Vulnerability StatusVulnerability Status
for memory allocation at 0for memory allocation at 0

► Linux 2.4
► Linux 2.6
► FreeBSD 5.3
► OpenBSD 3.6
► Linux emulation on FreeBSD 5.3
► Linux emulation on OpenBSD 3.6
► Solaris 10 / x86
► Solaris 9 / Sparc
► Windows XP SP1

SAFE
UNSAFE
SAFE
SAFE
SAFE
SAFE
UNSAFE
SAFE
SAFE

OS, cc
issues

Large memory management vulnerabilities

Table offsetsTable offsets
▐ Access to buffer[i] == *(buffer+i) instead of *buffer

► Means access to *(i) if buffer is NULL
► Can be in a valid mapping!

 Depends on how much control we have on the index i
 Depends on how close to address 0 we can put a mapping

▐ Vulnerable code sample
numberOfMessages += 1;
buffer = realloc(buffer, sizeof(imapFlags) * numberOfMessages);
(...) // no check to see if buffer resizing has failed
buffer[numberOfMessages-1] = messageFlags;
 // could be a write to *(0+numberOfMessages-1)

Exploiting
more bugs

Large memory management vulnerabilities

C++ “NULL” objectsC++ “NULL” objects
▐ A high-level allocation function might return a

“NULL” instance of a C++ class on failure
► Static object stored in .(ro)data
► Heap corruption may happen if return value is not checked

▐ Vulnerable code real-life example (Mozilla)
When it fails to allocate memory, the ReplacePrep function "nullifies" the string :

mData = NS_CONST_CAST(char_type*, char_traits::sEmptyBuffer);
mLength = 0;

But in nsTSubstring_CharT::Replace the return value was not checked:
size_type length = tuple.Length();
cutStart = PR_MIN(cutStart, Length());
ReplacePrep(cutStart, cutLength, length);
if (length > 0) tuple.WriteTo(mData + cutStart, length);

Exploiting
more bugs

Large memory management vulnerabilities

Exploiting other bugsExploiting other bugs
with mapping overflowswith mapping overflows

▐ No gap / guard page enforced between mappings
► Not enough protections on most systems
► Contiguous mappings happen if large memory usage
► Allows us to turn an overflow or underflow...
► ... into corruption of another memory area

▐ May help to solve some exploitation problems
 Difficult heap buffer overflows (end of heap, new GLibc and XP SP2

protections)
 Large size memcpy heap overflows (-1 == 4G) that would trigger a crash
 If a mapping is allowed on top of stack (threads, grsec random stack...):

• Stack buffer overflow in argv() or env, in main() when main() never returns,
big overflows with propolice-like protection...

 Buffer underflows (also on stack on Linux 2.6)

Exploiting
more bugs

Large memory management vulnerabilities

Example: exploiting Windows XPExample: exploiting Windows XP
heap overflows with a mapping overflowheap overflows with a mapping overflow

► By filling the memory we may
allocate heap next to Thread
Environment Blocks (TEB)...

Exploiting
more bugs

Heap

TEB 1

TEB 2

TEB N-1

TEB N

TEB 3

Overflow of
controlled
size

Large size
overflow
(memcpy with
size -1...)

Top of VM

Large memory management vulnerabilities

Example: exploiting Windows XPExample: exploiting Windows XP
heap overflows with a mapping overflowheap overflows with a mapping overflow

► By filling the memory we may
allocate heap next to Thread
Environment Blocks (TEB)...

Exploiting
more bugs

Heap

TEB 1

TEB 2

TEB N-1

TEB N

TEB 3

Overflow of
controlled
size

Large size
overflow
(memcpy with
size -1...)

...
other

TEB data
...

bottom of stack
top of stack

SEH chain ptr

Heap

Top of VM

FFFFFFFF
ptr to code

“shellcode”

► ...and
overwrite the
SEH chain
pointer of our
thread's TEB
to redirect
execution flow
Sanity checks in
ntdll.dll can be
bypassed by tuning
the “top of stack”
and “bottom of
stack” pointers

Large memory management vulnerabilities

Application flawsApplication flaws
dealing with large data sizesdealing with large data sizes

Large memory management vulnerabilities

►Analysis of integer overflows in 32 bits counters
►Handling of library calls in OOM situations
►The MMAP_FIXED aberration

Application flawsApplication flaws
dealing with large data sizesdealing with large data sizes

Large memory management vulnerabilities

Integer overflows and signInteger overflows and sign
problems in 32 bits countersproblems in 32 bits counters

▐ 32 bits integer overflows when handling large data
► Impossible to allocate 4G on 32 bits CPU
► Nevertheless math calculations can make integer wrap

 Multiply by 3 (base64 decoding...): if we can allocate 1.3G contiguous
int len = strlen(data);
bufLen = (len * 3)/4;

 Multiply by 2 (string escape, buffer growth...): 2.7 G cont. max on Lin. 2.6

▐ 32 bits integer sign problems
► Appear when len > 2G

int len = strlen(ptr);
if (len > buf_length) buf = realloc(buf, len+1);
strcpy(buf, ptr); // overflow if reallocation was not done

Application
flaws

Large memory management vulnerabilities

Handling of library callsHandling of library calls
in OOM situationsin OOM situations

▐ Idea: applications do not check return values for
library calls that are trivial or that “always” success,
but some of them will not do their job in OOM
situations

► Applications make wrong assumptions about the actions they took
► It may create application malfunction and errors, some potentially

exploitable

▐ Needs more research!

Application
flaws

Large memory management vulnerabilities

Usage of MMAP_FIXEDUsage of MMAP_FIXED

▐ Calling mmap() with the MMAP_FIXED parameter
destroys any previous mapping at the address

▐ It is impossible to safely predict an address where a
hole will exist in memory

► Example for Linux programs:
 Differences in allocation behavior between Linux 2.4 and 2.6
 Linux emulation layers on other OSes has a different behavior
 User interaction (big memory allocations)

▐ Thus, its use is unsafe

Application
flaws

Large memory management vulnerabilities

Easy to exploit?Easy to exploit?
Easy to protect from?Easy to protect from?

Large memory management vulnerabilities

►System limitations
►Network limitations
►Protecting ourselves

Easy to exploit?Easy to exploit?
Easy to protect from?Easy to protect from?

Large memory management vulnerabilities

System limitationsSystem limitations

▐ Memory size
► But VM can be overcommited if it is not accessed

▐ Resource limitations
► Stack size, data size, total VM size...

▐ Allocation speed
► RAM is quick even for GBs
► Becomes quite slow (minutes) when switching to disk swap

Large memory management vulnerabilities

Network limitationsNetwork limitations

▐ Upload speed
► GBs can be sent in minutes or hours on modern LAN and Internet
► Services timeouts are a problem
► Data zip-bombs, memory leaks, multithreading... can help

▐ Lack of information about the target
► Brute force is likely to be needed for these attacks

Large memory management vulnerabilities

ProtectionProtection

▐ GCC flag -fstack-check
▐ On Linux 2.4: increase heap_stack_gap in /proc
▐ Application code security audit
▐ Memory limits handled by the application (PHP...)

► Memory leaks are to be treated as security bugs ;-)

▐ Resource limitation enforced by the OS
► Two edges sword

▐ Vendor patches?

Large memory management vulnerabilities

““Don't panic”Don't panic”

▐ Very specific conditions may be necessary to
succeed in real life with these techniques

▐ Vulnerabilities introduced by OSes will be patched
▐ Switching to 64 bits will solve some of these issues

... and introduce new ones (ex: the long type is 64 bits on Unixes, but is
32 bits on Windows!)

▐ Yet some applications, on some systems, meet the
conditions and critical exploitable vulnerabilities
exist. (but don't panic and go audit your code)

Large memory management vulnerabilities

ConclusionConclusion
▐ Usage of large quantities of memory in modern

computing introduces unexpected vulnerabilities
▐ Security holes may exist in applications even if

their code is valid: the OS and the compiler break
usual safe assumptions

▐ Some of these flaws will be patched...
▐ ... others are classes of vulnerabilities that will last

► More research needs to be done:
 The area is broad, and my time is limited
 What about other OSes, threading libraries, compilers, embedded

systems, emulation layers (Linux...), virtual machines...
 How many applications are exploitable in real life situations?

Large memory management vulnerabilities

Thank you!Thank you!

Feedback, questions, comments... are welcome
gael.delalleau@beijaflore.com

 gael.delalleau+csw@m4x.org

These updated slides will be available on
http://www.cppsecurity.com

Any questions?

Thanks to Solar Designer and H. D. Moore. All errors are mine.

mailto:gael.delalleau@beijaflore.com
mailto:gael.delalleau+csw@m4x.org
http://www.cppsecurity.com/

